
1

Microcontroller Development Kit
ULINK2 USB/JTAG Adapter

Evaluation Boards

Hans Schneebauer

Development Tools

Session Agenda
Introduction and Overview

RealView Microcontroller Development Kit
µVision Integrated Development Environment
Advantages of Complete Device Simulation
RealView Compilation Tools

Hardware Components
Evaluation Boards
ULINK2 USB-JTAG Adapter
Real-Time Agent

RTX Real-Time Kernel
RTOS Concepts
RTX Features
RTX Configuration

2

Keil – An ARM Company
Leading supplier of MCU development tools

ANSI C/C++ compilers, Debuggers.
Device Simulators
Real-time kernels, real-time libraries.

Extensive Device Database
Including >1,200 8/16/32 bit MCU’s.

Excellent, Established support
Web support portal.
User group structure
Global distribution network.

Huge Installed Base
100K+ users world wide.

Microcontroller Development Kit (MDK)

Industry Leading Technology
RealView Compilation Tools
Keil µVision Integrated Development Environment

Supports Devices
ARM7/9 and Cortex-M3 based MCU’s
Start-up Code, Flash Algorithm, etc
Complete Device Simulation

Optional Hardware Products
ULINK2 USB-JTAG Adapter
Evaluation Boards

RTX Real Time Kernel
Efficient RTOS Kernel for small systems
3rd Party RTOS Support

Complete software development environment for ARM based
microcontrollers. Easy to learn and easy to use!

3

µVision Editor
Project Management & Make Utility

µVision Editor
Project Management & Make Utility

RTX RTOS
Library

RTX RTOS
Library

µVision DebuggerµVision Debugger

RealView C/C++
Compiler

RealView C/C++
Compiler

RealView
Macro Assembler

RealView
Macro Assembler

CPU & Peripheral
Simulation

CPU & Peripheral
Simulation

RealView LinkerRealView Linker

RealView
Microcontroller Development Kit

RealView Real-Time
Library

RTX Real-Time KernelRTX Real-Time Kernel

TCP/IP Network Suite
TCP, UDP, PPP, and SLIP Interface

HTTP Server with CGI Scripting
Telnet Server, TFTP Server
SMTP Client, DNS Resolver

TCP/IP Network Suite
TCP, UDP, PPP, and SLIP Interface

HTTP Server with CGI Scripting
Telnet Server, TFTP Server
SMTP Client, DNS Resolver

Flash File SystemFlash File System

USB Device InterfaceUSB Device Interface

CAN InterfaceCAN Interface

Third Party
Utilities

Software Version
Control System

Software Version
Control System

PC-LINT
intensive syntax check

with MISRA support

PC-LINT
intensive syntax check

with MISRA support

I-Logix Rhapsody
UML 2.0

I-Logix Rhapsody
UML 2.0

CAN Connector
for Device Simulation

CAN Connector
for Device Simulation

GUI Library
with Display Simulation

GUI Library
with Display Simulation

MATLAB/Simulink
Simulation Interface

MATLAB/Simulink
Simulation Interface

Microcontroller Development Kit (MDK)

Keil ULINK
JTAG Adapter

Keil ULINK
JTAG Adapter

RealView Microcontroller Development Kit

4 Steps…

4

Create Program

Step 1: Select Device &
Specify Target Hardware

Step 2: Configure Device &
Create Application Code

µVision includes Project Manager
and Editor and Debugger

Device Database on Web & µVision.
simplifies Chip Selection and Setup

Flash Download and Target
Debugging via ULINK

Debugging via µVision Debugger
and Device Simulator

Program Testing

Step 3: Analyze Program with
µVision Device Simulation

Step 4: Flash Download and Final
Testing in Target Hardware

5

RealView Microcontroller Development Kit

µVision
Integrated Development Environment

µVision IDE & Debugger
Leading microcontroller Integrated Development Environment.

Common to ARM, C166 and 8051 Platforms
Intuitive Project Management

Including Target Device configuration and Device Database
Source Code Editor
High Speed Simulation

Instruction Set
On-Chip Peripherals

Target Debugging
Flash Programming

6

Complete Device Simulation
The µVision Advantage

µVision Device Simulation

Complete Simulation of target.
Entire Target Device.

Fast Instruction Set Simulation
Interrupt Simulation
On-Chip Peripheral’s

ADC, DAC, EBI, Timers
UART, CAN, I2C….

Including external signals and I/O

Full Simulation Information
Contained in Device Database

Supports > 170 ARM based MCU’s
Included in RealView MDK

All components of the Target Device are Simulated.
Code can be run on the entire device.

www.keil.com/uVision/db_sim.asp

7

µVision Device Simulation
All Parts of Target Device are accessible and controllable.

Dialog Boxes
Complete access to Peripherals

Read and Write

Interrupt and I/O systems

Device Simulation – Advantages

Time to Market not the only Advantage
Well Known benefits of Simulation

Test Before Hardware available
Hardware cannot be damaged
No extra components required

Real Advantages over Hardware Testing
Embedded Trace has limitations
Many things are only possible in Simulation
Lower Cost

Easy with RealView MDK
Device Database

Removes configuration hassle

Complete Device Simulation allows software testing with no hardware,
providing quick test cycles and improving product quality.

8

ETM Trace
ETM not available in all systems.

ETM is relatively new to MCU world
Increasing with ARM9 MCU families

Very rare in ARM7 MCU’s
ETM not always available

Requires additional pins
ETM pins shared with other I/O

for example ADC or GPIO
Additional Hardware

Costly

Complete Device Simulation offers real advantages.

CPU and Peripheral Control
Simulation offers true system synchronization with all components
that allows total system halt, detailed analysis, and full run control.

Halt Stops Peripherals
Whole system stops when
needed
Breakpoint and Single-Stepping
External signals all stop

Complete System Analysis
Test can be reproduced
Executes from a ‘known’ state

Full Power-Down Control
Debug in all MCU states
Systems is always accessible
Timing analysis of power-down
activity

No Adaptation Hassle
Hardware can be destroyed
Small systems are physically
hard to connect

9

Analysis Tools
RealView Microcontroller Development Kit

µVision Code Coverage
Simulation gives extra features not available with JTAG Debuggers.

For example: Code Coverage at Source and Assembly Level.

Execution Statistics
Always Active for Complete Project

Instruction Status
Color Coded

Multi-Session Coverage
With Save / Restore

10

µVision Execution Profiling
Simulation provides exact CPU Timing and allows

detailed program execution analysis with different parameters.

Detailed Timing Statistics
Active for Complete Project

No configuration required
Execution Time
Number of Executions

Flexible Views
Module
Function
Source
Assembly

Timing Analysis
Analog & Digital I/O Pins and Signals
Internal Variables

Exact Timing
Using Cursor Line
Tool-Tip Delta Information

Code Analysis
Direct from Analyzer Window

µVision Logic Analyzer
Allows analog and digital signals to be monitored graphically.

Easy, fast analysis of signal timing with code trace.

11

µVision Debug & Signal Functions

Expand Command Set
C Macro Language.
Trigger by Breakpoints.
Output Analysis.
Input Pattern Generation.

Signal Functions
Background Execution.
Time or Access triggered delays.
Input Signal Generation.

Built-In Functions
Test Output, user queries.
Analog Signal Generation.

µVision Simulation Template: A/D Input - Sine Wave Signal

Users may define and generate complex input functions
as stimulus to simulation models.

// Generate Sine Wave Signal on A/D Channel 0

signal void ADC0_Sine (void) {
float volts; // peak-to-peak voltage
float frequency; // output frequency in Hz
float offset; // voltage offset
float duration; // duration in Seconds
float val;
long i, end;

volts = 1.4;
offset = 1.6;
frequency = 1800;
duration = 0.1;

printf ("Sine Wave Signal on AD Channel 0.\n");

end = (duration * 100000);
for (i = 0 ; i < end; i++) {
val = __sin (frequency * (((float) STATES) / CLOCK)

* 2 * 3.1415926);
AIN0 = (val * volts) + offset;
swatch (0.00001); // in 10 uSec steps

}
}

Use Cases for Simulation
Generic: Detect Illegal Memory Access
ULINK2: Analysis of JTAG I/O Pins
Modem Receiver for CLIP

12

Detect Illegal Memory Accesses
Requirement: Detect illegal accesses that fail in Hardware

MAP command allows to define access rights: read, write, execute
On illegal memory access you may display messages or stop simulation

// Un-aligned memory access create wrong values in Hardware
// but are hard to detect during JTAG Debugging

typedef struct { struct {

COLOR Color; INPUT_EVENT Event;

unsigned short Level; unsigned char Buffer[10];

} LEVEL; } Input;

unsigned short SetStruct (void) {

LEVEL *pLevel;

pLevel = (LEVEL *)&Input.Buffer[0]; // set pointer

pLevel->Level = 0x1234; // UN-ALIGN ACCESS!

:

“Better verification with no extra effort”
http://www.keil.com/download/docs/323.asp

Use Case: Detect I/O Glitches
Requirement: Analyze timing and glitches of JTAG I/O Pins

Using the Logic Analyzer the JTAG signal pin timing is verified.
Glitches of I/O pins can be analyzed.
Synchronisation with the Source Code simplifies corrections.

http://www.keil.com/download/docs/322.asp

13

Use Case: Modem Receiver for CLID
Requirement: Replace hardware with software algorithms

CPU time is critical since CPU is needed also for other functions
Check internal variables over time during the development of algorithm

Analog modem signal on CPU input

Digital samples after filtering

De-phase algorithm performs phase shifting

PLL quadrant of de-phaser input

PLL quadrant of de-phaser output

Extracted Bit before final filtering

Use Case: Modem Receiver for CLID
Analysis of required CPU time of the final algorithm

Open the Performance Analyzer that records execution timing

Timing of modules + functions
Timing of C statements
Timing of CPU instructions

http://www.keil.com/download/docs/326.asp

14

RealView Microcontroller Development Kit

RealView Compilation Tools

RealView Compilation Tools

The RealView Compilation tools contain:
Highly-optimizing ISO C/C++ compiler
Supports ARM, Thumb and Thumb2 Instruction sets including FPU
Full C and C++ run-time library support
RogueWave C++ Standard Template Libraries

The RealView Compiler Advantage:
Smaller, Faster Code that is very reliable

RealView Compiler 3.1 (End of May 2007)
Micro Library for small Embedded Systems (about 50% less memory)
Source Browser Integration for µVision

Best in class compilation tools, making code smaller and more efficient.
Enabling applications to run faster while reducing system cost.

15

MicroLib – Significant Savings

0

5000

10000

15000

20000

25000

ARM Thumb Thumb2
0

5000

10000

15000

20000

25000

30000

ARM Thumb Thumb2

Library Totals RO Totals

63%6,24417,156Library TotalThumb-2Cortex-M3

57%8,98021,352Library TotalThumbARM7TDMI

61%5,79615,018Library TotalARMARM7TDMI

9,348

12,816

8,976

MicroLib

20,7129

25,608

18,616

Standard

RO Total

RO Total

RO Total

54%

50%

51%

% savingObjectProcessor

Based on Dhrystone 2.1 Benchmark

61% 51%

RealView Compilation Improvement

SDT 2.5

9MB ROM Size
46 Benchmarks, 48 Applications

80%

85%

90%

95%

100%

1999 2000 2001 2002 2003 2004 2005 2006

RVCT 3.0

16%

Code Size Reduction

SDT 2.5

90%

95%

100%

105%

110%

115%

120%

125%

130%

135%

1999 2000 2001 2002 2003 2004 2005 2006

RVCT 3.0

+34%

Performance Increase

ADS v1.2
RealView 2.0

16

RealView Microcontroller Development Kit

Hardware

Wide Range Evaluation Boards

Designed for easy set-up
Extensive Program Examples.
Wide range of peripherals.
Popular ARM based MCU’s.

Proven hardware for quick project development and debug.

MCB2103

MCB2370

17

Program Debugging
Single Stepping & Real-Time Execution
Flash and Software Breakpoints
Memory Access Breakpoints

Flash Programming
Download, Verify, and Execute
Download: 20KB / Second

New Features
Real-Time Agent – ‘on-the-fly’ debugging
Cortex-M3 Serial Wire Debug and Trace
Plug and Play USB Installation
Higher Speed – 80KB/Sec

ULINK2 – USB / JTAG Adapter

Easy to use USB run control adapter, supporting JTAG debug
and Flash programming.

Debugging ‘on-the-fly’

Real-Time Agent

18

Embedded Debug Challenges

Program Halt is not practical in many Embedded Applications
Mechanical System: depends on movements that cannot be halted
Motor Control: may even destroy the hardware due to overloading
Communication: time-outs occur when hand-shake is missing
Signal Detection: algorithm does not receive consistent data

Developers need solutions that:
Provide verification and timings for algorithm development
Work on standard hardware with minimal overhead
Are easy-to-implement and easy-to-use

RealView MDK includes
µVision Device Simulation: allows exact analysis of algorithms
ULINK2 Real-Time Agent: allows debugging ‘on-the fly’ without system halt

Traditional debugging with run-control halts program execution.
The real world does not stop which makes run-stop debugging difficult.

Real-Time Agent - Overview

JTAG

PeripheralsCPU

Application +
Real-Time Agent

Small C Module
Adds little overhead to user application ~1,500Bytes R/O and ~300Bytes R/W

Extends the capabilities of the µVision Target Debugger.
Communicates with µVision using standard JTAG channel via ULINK2

No extra trace hardware or pin compromises

Debugging ‘on the fly’
Read and Write memory and variable access during program execution
Set breakpoints while program is running
Serial I/O (printf) via debug channel

Enables target debugging ‘on the fly’ that requires no system halts

19

RTX Real-Time Kernel
RealView Real-Time Library

Why use a Real-Time Kernel?
Building Block

Software / Hardware Interface Layer
Easy expansion of Application Software

Hardware independent

House Keeping
Process Scheduling

CPU Resource Management
Task Communication

Focus on Application Development
Better Software Layers
Leave basic system management

20

Software Concepts for ARM
The ARM core requires a different mindset for embedded applications.

ARM7 & ARM9 has just two interrupt levels Standard (IRQ) and Fast (FIQ) interrupt but
provides CPU modes with separate interrupt stacks for predictable stack requirements.

‘main’ as End-less Loop
Solution for Simple Applications
Usage together with powerful multi-
level interrupt system
Stack Usage un-predictable

Using a Real-Time Kernel
Allows application to be separated into
independent tasks
Message passing eliminates critical
memory buffers
Each Task has an own stack area
Interrupt communication with event
flags and messages

What makes a Good RTOS
Performance

Predictable Behaviour
Low Latency
High Number of Priority Levels

Ease of Use
Flexible API and implementation
Tool Chain integration.
Scheduling Options: Cooperative, Preemptive, Round Robin

System Friendly
Consumes small amount of system resource
Proven Kernel
Low Cost

21

Real-Time?
Real-Time does not equal High Speed

Not all tasks are Super High Speed
Systems perform to deadlines
Tasks need to complete before deadline and other tasks
Real-Time OS should not be confused with High Speed Requirements.

Real-Time, not mission Critical
Varying levels of Real-Time

Hard, Firm, Soft and Non
RTOS not confined to Critical Systems

Real-Time OS = Building Block
RTOS provides easy Multitasking Environment
House Keeping Tasks

RTX Features

Main Features
Multi-Tasking – Round Robin, Pre-emptive, Cooperative
Unlimited – User Timers, Semaphores and Mailboxes
Royalty Free

Full-featured Real-Time kernel meets the requirements of
a ‘good’ real-time kernel

256No. of Tasks Active
< 300 CyclesContext Switch
< 100 Cycles Interrupt Latency

256Priority Levels
UnlimitedNo. of Tasks Defined

Task Specifications
1.5K – 5KCODE Space

(depending on used functionality)

< 500RAM Space
(each active task requires an own
stack space)

BytesMemory Requirements

22

Process Management
Create and delete tasks
Change Task Priorities
Event Flag Management
Interrupt Functions
CPU Resources

Multi-Tasking
Preemptive Context Switching
Scheduling
Semaphore Management

Real-Time Control
Deterministic Behaviour

Inter-task Communication
Mailbox Management
Interface to Interrupt Functions

Memory Allocation
Thread-safe (usage even in ISR)

RTX Real-Time Kernel
Full-featured Real-Time kernel designed to meet the challenges of

Embedded System Design

Compilation
Tasks are integrated into the RealView C Compiler language.

Close integration in RealView MDK (µVision)

µVision IDE automatically includes RTX Libraries

Tool Chain Integration

RTX is fully integrated into RealView MDK for easy development and
debugging

void task1 (void) _task {
… code of task 1 placed here….

}

23

RTX Setup
All major parameters of RTX can be easily changed using

the µVision configuration wizard.

Kernel Aware Debugging
RTX and µVision are tightly integrated, kernel aware debugging is fully

supported.

Tasks and Event analysis
Resource Loading

Allowing resource optimization

24

RL-ARM – Users Guide

